Misterul lui Mobius, dezlegat de un matematician după cinci decenii
Publicat de Cosmin Meca, 13 noiembrie 2023, 08:50
Benzile Möbius sunt forme geometrice cu doar o singură față. Luați o fâșie de hârtie: aceasta are o față și un spate.
Apoi răsuciți-o și lipiți cele două capete. În mod surprinzător, nu mai există față sau spate. Puteți trasa o linie pe întreaga sa suprafață fără a ridica creionul de pe hârtie.
Cu 46 de ani în urmă, matematicienii au sugerat dimensiunea minimă pentru o astfel de bandă, dar nu au putut-o demonstra. Acum, cineva a reușit să dezlege misterul lui Mobius.
De la crearea benzii de către August Ferdinand Möbius și Johann Benedict Listing, simplitatea sa în fabricare și vizualizare a trebuit să fie echilibrată cu complexitatea matematică a unei astfel de forme.
Nu este surprinzător că în 1977, Charles Sidney Weaver și Benjamin Rigler Halpern au creat Conjectura Halpern-Weaver, care specifica raportul minim dintre lățimea benzii și lungimea acesteia.
Aceștia au sugerat că pentru o bandă cu o lățime de 1 centimetru, lungimea trebuie să fie cel puțin rădăcina pătrată a 3 centimetri (aproximativ 1,73 centimetri), notează IFL Science.
Misterul lui Mobius, rezolvat după aproape 5 decenii
Pentru benzi Möbius netede, „încorporate”, care nu se intersectează între ele, conjectura nu avea o soluție. Dacă banda poate trece prin ea însăși, este o problemă mult mai ușor de rezolvat, a propus matematicianul Richard Evan Schwartz, de la Brown University (SUA), în 2020, dar a făcut o greșeală.
Într-o lucrare postată ca preprint, ceea ce înseamnă că încă nu a fost supusă evaluării de către alți cercetători, Schwartz a corectat eroarea și a găsit rezolvarea pentru misterul lui Mobius.
Soluția provine dintr-o lemă din lucrarea sa anterioară. Un concept crucial este că pe suprafața benzilor Möbius există linii drepte care trec prin fiecare punct și se termină la margini.
Pentru a dovedi prima parte a lemei, el trebuia să dovedească că existau linii perpendiculare pe acele linii drepte în același plan. Și a reușit.
„Nu este deloc evident că aceste lucruri există”, a spus Schwartz.
Cum s-a ajuns la această descoperire?
Următorul pas a fost să taie benzile Möbius și să înțeleagă ce fel de forme aveau. Ideea era să simplifice problema aplatizând banda pe un plan. În articolul original, Schwartz credea că o bandă tăiată ar arăta ca un paralelogram, dar s-a dovedit a fi un patrulater diferit: un trapez.
„Calculul corect m-a dus la numărul care era conjectura. Am rămas uimit… Am petrecut, gen, următoarele trei zile aproape fără somn, doar scriind această lucrare”, a spus el.
sursa: descopera.ro